Enantioselective total synthesis of plakotenin, a cytotoxic metabolite from Plakortis sp†

Stephanie Arzt, Emmanuel Bourcet, Thierry Muller and Stefan Bräse*

Received 16th March 2010, Accepted 13th May 2010 First published as an Advance Article on the web 2nd June 2010 DOI: 10.1039/c004199h

The first total enantioselective synthesis of plakotenin is described. This marine natural product was isolated from an Okinawan sponge of the genus Plakortis and shows potent biological activity against several cancerous cell lines. A biomimetic intramolecular Diels-Alder reaction served as a key step in the total synthesis. The synthesis proves the relative and absolute stereochemistry of natural plakotenin.

Introduction

Nature provides a considerable number of highly functionalised natural products with great structural divergence. A particular interesting and biologically active group of natural products is derived from unsaturated polyketides and a subsequent Diels-Alder reaction.1

Plakotenin (1) was isolated from an Okinawan marine sponge of the genus *Plakortis* (Fig. 1).² It has a bicyclic system with six stereogenic centers, one of which is quaternary. Homo-plakotenin (2)³ and nor-plakotenin (3)³ are related carboxylic acids from the Palauan sponge *Plakortis lita* (Fig. 1). They are all optically active and their absolute stereochemistry was deduced from analogous compounds and from 2D-NMR analysis.^{2,3} Compounds 1-3 were found to significantly reduce proliferation of rheumatoid synovial fibroblasts³ and show moderate general cytotoxicity.² Spiculoic acid (4), a relative of plakotenin (1) with an additional carbonyl group isolated from Plakortis angulospiculatus,4 was recently synthesised (Fig. 1).5-7 Its absolute stereochemistry had to be revised after total synthesis and is shown in Fig. 1.

3: R1 = H, R2 = H: Nor-Plakotenin

Fig. 1 Plakotenin (1) and related compounds. 2-4,8

Based on precedence, 8,9 we hypothesised that plakotenin stems from a biosynthetic tetraene precursor 5 (Scheme 1). In contrast to spiculoic acid whose biosynthetic precursor has been shown to be

Institut für Organische Chemie, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. E-mail: braese@kit.edu; Fax: + 497216088581

Ph Diels-Alder Ph
$$(E,E,E,E)$$
-5a (E,E,E,E) -5b (E,E,E,E) -5b

Scheme 1 Hypothetical ring closure of tetraenes (E,E,Z,E)-5a and (E,E,E,E)-**5b**.

a triene-ene, plakotenin needs a diene-diene system. Although, linear and/or oxidised all (E)-configurated polyketides (e.g. plakortin)8,10 were often isolated from *Plakortis* strains and show interesting biological activity,8 plakotenin (1) necessarily stems from a rather rare (E, E, Z, E)-tetraene precursor **5a** (Scheme 1).¹⁰ In order to access plakotenin (1) as well as related diastereomers, both non linear and linear tetraene systems 5a and 5b have been considered. The challenge of a total synthesis of plakotenin (1) stays in the generation of the stereogenic centers and double bonds. In this manuscript we describe the total synthesis of plakotenin (1, Fig. 1).11

Results and discussion

Stereochemical analysis revealed that the tetraene 5 is perfectly suited for a bidirectional approach using a central C_2 -symmetrical dimethyl building block (Scheme 1).

The required dimethyl precursor 9a was synthesised by an asymmetric alkylation approach (Scheme 2). Commercially available Myers pseudo-ephedrine auxiliary 6^{12,13} was alkylated with iodide (S)-7¹⁴—prepared from Roche ester¹⁵—to give the amide 8 as a single diastereoisomer. The trityl group was chosen as the protecting group due to its stability during the reaction sequence as well as its facile introduction and removal. 16 Reduction of amide 8 using lithium amidotrihydroborate gave alcohol 9a. In order to

[†] Electronic Supplementary Information (ESI) available: Experimental procedures and characterisation for compounds S1, S2 and copies of NMR spectra of compounds 1, 13, 14a, 15a, 16-19 are available. See DOI: 10.1039/c004199h/

Scheme 2 Sequence for the generation of alcohol (E,E)-13.

assure that the desired diastereochemistry was achieved during the asymmetric alkylation, alcohol **9a** was deprotected (formic acid) and the optical rotation of the obtained diol **9b** compared with literature values. ¹⁷ Oxidation of alcohol **9a** delivered aldehyde **10**. Wittig reaction sequence with subsequent leveling of the oxidation state gave aldehyde **11**. Latter was also directly accessible from aldehyde **10** in comparable yield (63%) in one step by using silylimine **B**. ¹⁸ Extension of **11** via a Julia–Kocienski olefination approach with tetrazole C^{19} gave rise to a mixture of inseparable (E,E)/(Z,E)-dienes **12** in a 10:1 ratio. The undesired geometrical isomer could eventually be removed after cleavage of the trityl protecting group with camphorsulfonic acid, yielding alcohol (E,E)-**13** as pure isomer in good yield.

With (E,E)-13 in hand, we first explored the route of linear tetraene precursor **5b**. Oxidation of (E,E)-13 with Dess-Martin periodinane (DMP) furnished the corresponding aldehyde which was directly used in a classical Wittig reaction (Scheme 3). However, under the employed reaction conditions (**D**, toluene, $100\,^{\circ}$ C), cyclisation of intermediate (E,E,E)-14b took place to give the bicyclic product 15b. The corresponding alcohol 16b was obtained in good yield after subsequent reduction (43% over three steps). Its stereochemistry was deduced by 2D-NMR experiments (Fig. 2, see ESI†). The spectra showed prominent differences with plakotenin (1) and its congeners, which support the stereochemical assignment made for plakotenin (1).² Unfortunately, alcohol 16b

Scheme 3 Wittig and in situ Diels-Alder reaction yielded 16b.

Fig. 2 NOESY correlations for compounds 16a and 16b.

was not suitable for direct extension to plaketonin isomers using classical olefination chemistry (results not shown).

We then turned to the synthesis of non-linear tetraene precursor 5a. In order to avoid *in situ* cyclisation of the generated triene, a mild (Z)-selective variation of the Horner–Wadsworth Emmons reaction, using phosphonate E (ethyl 2-((bis(o-tolyloxy))-phosphoryl)butanoate) was chosen to generate the triene ester (E,E,Z)-14a required for the plakotenin stereochemistry. Thus, (E,E,Z)-isomer 14a was obtained in 64% yield (over two steps) with a Z:E selectivity of 6:1. Both isomers could be separated by silica column chromatography. The classical HWE reaction conditions using phosphonate F also proceeded nicely and, surprisingly delivered again the (E,E,Z)-14a isomer as the major product with a 4:1 ratio in 76% yield over two steps

Scheme 4 HWE reaction followed by Diels-Alder reaction yielded 16a.

Scheme 5 Sequence to complete (R,R,R,R,R,S)-plakotenin (1).

(Scheme 4). NOESY experiments realised on alcohol 17 (see ESI \dagger) permitted indeed the assignment of the geometry of the double bonds unambiguously. With the triene in hand, (E,E,Z)-14a was heated in toluene overnight and cyclisation took place to deliver the bicycle (R,R,R,R,R,S)-15a in very good yield (85%, Scheme 4).

The stereochemistry of the product was again deduced by 2D-NMR spectra (realised on alcohol 16a, obtained by reduction of ester 15a with LiAlH₄) and shows very similar NMR shifts compared to plakotenin (Fig. 2). Unfortunately, after subsequent oxidation of 16a, as for 16b, introduction of the last missing double bond for plakotenin could not be achieved by olefination reactions (results not shown). Since addition of other nucleophiles (e.g. Grignard reagents) proceeds smoothly on the corresponding aldehyde (results not shown), this failure might be attributed to steric hindrance. Hence, we focused on the strategy of the biomimetic Diels-Alder reaction of the corresponding tetraene.

Standard reduction of (E,E,Z)-14a using LiAlH₄ and subsequent oxidation with DMP provided the corresponding aldehyde, which was directly elongated to the tetraene (E,E,Z,E)-18 using ester G (Scheme 5). It is noteworthy that compounds 14a, 17 and 18 are very prone to cyclisation and great care must be taken to store and handle these sensitive compounds in a cold environment. Indeed, on heating, tetraene (E,E,Z,E)-18 cyclises smoothly in excellent yield to ester (R,R,R,R,R,S)-19 detected as single diastereoisomer. Saponification eventually yielded synthetic plakotenin (1, Scheme 5), which was extensively analysed by 2D-NMR (the same correlations as for compound 16a are observed, see ESI†). The spectroscopic data (1 H-NMR, 13 C-NMR and mass) as well as the optical rotation of synthetic plakotenin (1) were identical with the reported data of the natural product (see ESI†).

Conclusions

In summary, we have developed a rapid and very efficient route to (*R*,*R*,*R*,*R*,*R*,*S*)-plakotenin (1) in 15 steps (14.7% overall yield from 6) which should also be suitable for the syntheses of analogous compounds such as 2 and 3. The biological assays and modelling studies to reveal the transition states are currently being pursued.

Experimental

General methods

¹H and ¹³C NMR spectra were recorded on a Bruker AM 400 (400 MHz/100 MHz), Bruker DRX 500 (500 MHz/125 MHz) or Bruker Avance 600 (600 MHz/150 MHz) instrument using CDCl₃ as solvent. Chemical shifts are expressed in parts per million (ppm, δ) downfield from tetramethylsilane (TMS) and are referenced to CHCl₃ (7.26 ppm) as internal standard. All coupling constants are absolute values and J values are expressed in Hertz (Hz). For assigning signal separation of ¹H NMR spectra the following abbreviations were used: s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, sext = sextet, m = multiplet, dd = doublet of doublets, dq = doublet of quartets, $ddq = doublet of dq and H_{arom} = aromatic proton.$ For assigning signals of ¹³C NMR spectra the following abbreviations were used: $p = \text{primary (RCH}_3)$, $s = \text{secondary (R}_2\text{CH}_2)$, t =tertiary (R_3 CH), q = quaternary (R_4 C). The assignment was supported by analysis of DEPT90 and DEPT135 spectra. MS (EI) (electron impact mass spectrometry), MS (FAB) (fast atom bombardment mass spectrometry) and HRMS: Finnigan MAT 90. The molecular fragments are quoted as the relation between mass and charge (m/z), the intensities as a percentage value relative to the intensity of the base signal (100%). The molecular ion obtains the abbreviation [M⁺]. IR (infrared spectroscopy): FT-IR Bruker IFS 88. IR spectra of oils were recorded as thin films on KBr; in the case of solids the neat substance was used. The deposit of the absorption band is given in wave numbers in cm⁻¹. Solvents and chemicals used for reactions were purchased from commercial suppliers. Solvents were dried under standard conditions; chemicals were used without further purification. All the reactions were performed in standard glassware. All reactions were carried out under Argon in flame-dried glassware. Evaporation of solvents and concentration of reaction mixtures were performed in vacuo on a Büchi rotary evaporator. Column chromatography was performed using silica gel 60 (purchased from Merck) under flash conditions. For thin layer chromatography, aluminium foils layered with silica gel with fluorescence indicator (silica gel 60 F₂₅₄) produced by Merck were employed. The detection was carried out with an UV-lamp from Heraeus, model Fluotest. Seebachreagent [molybdophosphoric acid (2.5 w%), cerium(IV) sulfate tetrahydrate (1.0 w%), H₂SO₄ conc. (6.0 w%), water (90.5 w %)] was used as dipping reagent. Specific rotations were determined using the polarimeter *Perkin Elmer* 241. Melting points were registered on a Mel-Temp II melting point microscope from *Laboratory Devices Inc.* and are not corrected.

(2R,4R)-N-((1S,2S)-1-Hydroxy-1-phenylpropan-2-yl)-N,2,4-trimethyl-5-(trityloxy)pentanamide (8)

A solution of *n*-butyllithium in hexanes (2.5 M, 10.8 mL, 27.0 mmol) was slowly added to a suspension of lithium chloride (3.64 g, 85.9 mmol) and diisopropylamine (4.10 mL, 3.00 g, 29.0 mmol) in THF (15 mL) at -78 °C. The resulting suspension was warmed to 0 °C briefly and was then cooled to -78 °C again. An ice-cooled solution of N-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N-methylpropionamide (3.14 g, 14.2 mmol) in THF (35 mL) was added. The mixture was stirred at -78 °C for 2 h, at 0 °C for 15 min and at rt for 5 min. The mixture was cooled to 0 °C and iodide 7 (2.99 g, 6.76 mmol) in THF (35 mL) was added. After being stirred for 2 d at 45 °C the reaction mixture was treated with half saturated aqueous NH₄Cl (70 mL) and the resulting mixture was extracted with EtOAc (3 × 40 mL). The combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica using cyclohexane/ethyl acetate 2:1 to give amide **8** (3.31 g, 91%) as white foam. $R_{\rm f}$ 0.22 (cyclohexane/EtOAc 2:1). – mp 50 °C. – $[\alpha]_D^{20} = +33.5$ (0.99) g/100 mL, CHCl₃). – ¹H NMR (400 MHz, CDCl₃): δ = 0.92 (d, J = 2.7 Hz, 3 H), 0.94 (d, J = 2.7 Hz, 3 H), 1.00 (d, J = 6.9 Hz, 3 H), 1.31–1.44 (m, 2 H), 1.50–1.61 (m, 1 H), 2.35–2.43 (m, 1 H), 2.50 (s, 3 H), 2.70 (dd, J = 8.8 Hz, J = 6.0 Hz, 1 H), 2.88 (dd, J =8.8 Hz, J = 4.7 Hz, 1 H), 4.24 (bs, 1 H), 4.49 (t, J = 7.2 Hz, 1 H), 7.11-7.24 (m, 14 H), 7.33-7.39 (m, 6 H). $-{}^{13}$ C NMR (100 MHz, CDCl₃): $\delta = 14.3$ (p), 17.5 (p), 18.2 (p), 31.7 (t), 34.1 (t), 37.8 (s), 67.4 (s), 76.4 (t), 86.0 (q), 126.1 (t), 126.8 (t), 127.5 (t), 127.6 (t), 128.2 (t), 128.7 (t), 142.5 (q), 144.3 (q), 179.0 (q) (The ¹H- and ¹³C NMR spectra are complex due to amide geometrical isomerism). – IR (neat): $\tilde{v} = 3382, 3059, 3030, 2969, 2930, 2871, 1620, 1490, 1449,$ 1410, 1373, 1318, 1221, 1155, 1070, 988, 926, 899, 839, 764, 747, 705, 648, 633, 506 cm⁻¹. – MS (FAB, Matrix: 3-NBA) m/z (%): 558 [M+Na]⁺, 536 [M+H]⁺, 243 (100). – HRMS (FAB, Matrix: 3-NBA) (C₃₆H₄₂NO₃): calc. 536.3165, found 536.3167.

(2R,4R)-2,4-Dimethyl-5-(trityloxy)pentan-1-ol (9a)

A solution of *n*-butyllithium in hexanes (2.5 M, 9.30 mL, 23.0 mmol) was added to a solution of diisopropylamine (3.50 mL, 2.50 g, 25.0 mmol) in THF (30 mL) at -78 °C. The resulting solution was stirred at -78 °C for 10 min, was then warmed to 0 °C and held at that temperature for 20 min. Lithium amidotrihydroborate (819 mg, 23.9 mmol) was added in one portion. The suspension was stirred at 0 °C for 15 min and then was warmed to rt. After 15 min, the suspension was cooled to 0 °C. A solution of amide 8 (3.20 g, 5.97 mmol) in THF (30 mL) was slowly added. The reaction mixture was warmed to rt, held at that temperature for 2 h and was then cooled to 0 °C where excess hydride was quenched by careful addition of 3 M aqueous HCl (70 mL). The mixture was stirred for 10 min at 0 °C and was then extracted with Et₂O (3 × 50 mL). The combined extracts

were washed sequentially with 3 M aqueous HCl (10 mL), 2 M aqueous NaOH (10 mL) and brine (50 mL). The organic layer was dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica using cyclohexane/ethyl acetate 9:1 to give alcohol 9a (2.03 g, 91%) as a white solid. $R_{\rm f}$ 0.18 (cyclohexane/EtOAc 6:1). – mp 72 °C. – $[\alpha]_D^{20} = +13.0 \ (0.81 \ \text{g}/100 \ \text{mL}, \ \text{CHCl}_3). - {}^{1}\text{H} \ \text{NMR} \ (400 \ \text{MHz},$ CDCl₃): $\delta = 0.87$ (d, J = 6.6 Hz, 3 H, CH₃), 0.93 (d, J = 6.7 Hz, 3 H, CH_3), 1.10–1.23 (m, 2 H, $CHCH_2CH$), 1.31 (t, J = 5.5 Hz, 1 H, OH), 1.61–1.69 (m, 1 H, HOCH₂CH), 1.79–1.87 (m, 1 H, TrtOCH₂CH), 2.89–2.96 (m, 2 H, TrtOCH₂), 3.34–3.46 (m, 2 H, HOCH₂), 7.20–7.31 (m, 9 H, H_{arom}.), 7.43–7.46 (m, 6 H, H_{arom}.). - ¹³C NMR (100 MHz, CDCl₃): $\delta = 16.3$ (p), 17.1 (p), 31.2 (t), 33.0 (t), 37.2 (s), 68.9 (s), 69.0 (s), 86.2 (q), 126.8 (t), 127.6 (t), 128.7 (t), 144.4 (q). – IR (neat): $\tilde{v} = 3299$, 3056, 3031, 2958, 2925, 2871, 1595, 1491, 1449, 1387, 1323, 1220, 1177, 1151, 1062, 1033, 985, 949, 931, 897, 821, 765, 752, 709, 697, 648, 632, 540, 484, 422 cm^{-1} . – MS (EI, 70 eV) m/z (%): 374 (1) [M⁺], 259 (12), 243 (100), 183 (17), 165 (35), 105 (11), 77 (4). – HRMS ($C_{26}H_{30}O_2$): calc. 374.2246, found 374.2249.

(((((2*R*,4*R*,5*E*,7*E*)-2,4,6-Trimethyl-8-phenylocta-5,7-dien-1-yl)oxy)methanetriyl)tribenzene (12)

To a solution of alcohol (4R,6R,E)-2,4,6-trimethyl-7-(trityloxy)hept-2-en-1-ol (S2) (201 mg, 485 µmol) in DMSO (10 mL) was added 2-iodoxybenzoic acid (340 mg, 1.21 mmol). The reaction mixture was stirred at rt for 1 h, after which it was diluted with H_2O (50 mL) and the resulting precipitate was filtered off. The aqueous layer was extracted with E_2O (3 × 20 mL). The combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to yield the crude aldehyde 11 (200 mg, 485 µmol, assumed to be quantitative) as colourless oil, which was used without further purification for the following olefination reaction.

To a solution of 5-(benzylsulfonyl)-1-phenyl-1H-tetrazole (218 mg, 728 µmol) in THF (5 mL) was slowly added lithium bis(trimethylsilyl)amide (1 M in THF, 600 µL, 600 µmol) at 0 °C. After stirring for 20 min at rt, it was cooled to -78 °C and a solution of crude aldehyde 11 (200 mg, 0.485 mmol) in THF (5 mL) was added. The reaction mixture was stirred overnight while slowly warming up to rt. It was diluted with Et₂O (5 mL) and the reaction quenched by addition of saturated aqueous NaHCO₃ (5 mL). The aqueous layer was extracted with EtOAc (3×15 mL). The combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica using cyclohexane/ethyl acetate 50:1 to give compound 12 (190 mg, 80%) as colourless oil. A 10:1 ratio of E/Z products was obtained. $R_{\rm f}$ 0.30 (cyclohexane/EtOAc 50:1). $- [\alpha]_D^{20} = -75.0 (0.71 \text{ g}/100 \text{ mL}, \text{CHCl}_3). - {}^{1}\text{H NMR} (400 \text{ MHz},$ CDCl₃): $\delta = 0.91$ (d, J = 6.6 Hz, 3 H, TrtOCH₂CHCH₃), 1.03 (d, J = 6.7 Hz, 3 H, C=CHCHC H_3), 1.09–1.16 (m, 1 H, $CHCH_AH_BCH$), 1.45–1.49 (m, 1 H, $CHCH_AH_BCH$), 1.63 (s, 3 H, PhCH=CHCCH₃), 1.70–1.80 (m, 1 H, TrtOCH₂CH), 2.36– 2.47 (m, 1 H, C=CHCH), 2.81 (dd, J = 8.6 Hz, J = 6.7 Hz, 1 H, $TrtOCH_AH_B$), 3.02 (dd, J = 8.7 Hz, J = 4.7 Hz, 1 H, $TrtOCH_AH_B$), 5.36 (d, J = 9.6 Hz, 1 H, PhCH=CHC=CH), 6.38 (d, J = 16.1 Hz,1 H, PhCH), 6.74 (d, J = 15.6 Hz, 1 H, PhCH=CH), 7.16–7.24 (m, 5 H, H_{arom}.), 7.26–7.32 (m, 9 H, H_{arom}.), 7.40–7.46 (m, 6 H,

 $H_{arom.}$). – ¹³C NMR (100 MHz, CDCl₃): $\delta = 12.4$ (p), 18.5 (p), 21.0 (p), 30.2 (t), 31.8 (t), 41.7 (s), 67.6 (s), 86.0 (q), 125.6 (t), 126.1 (t), 126.7 (t), 126.8 (t), 127.7 (t), 128.5 (t), 128.8 (t), 132.1 (q), 134.2 (t), 138.0 (q), 140.9 (t), 144.5 (q). – IR (film): $\tilde{v} = 3084, 3058, 3025,$ 2957, 2924, 2866, 2851, 1597, 1560, 1542, 1491, 1448, 1386, 1314, 1220, 1182, 1155, 1070, 1031, 959, 926, 899, 826, 774, 763, 746, 706, 647, 632, 530 cm⁻¹. – MS (EI, 70 eV) m/z (%): 486 (50) [M⁺], 374 (73), 414 (100), 485 (95). – HRMS (C₃₆H₃₈O): calc. 486.2922. found 486.2917.

(2R,4R,5E,7E)-2,4,6-Trimethyl-8-phenylocta-5,7-dien-1-ol (13)

To a solution of 12 (3.01 g, 6.19 mmol) in CH₂Cl₂-MeOH (200/100 mL) at 0 °C camphorsulfonic acid (2.44 g, 10.5 mmol) was added in one portion. The mixture was stirred at rt for 90 min and was then neutralized by the addition of saturated aqueous NaHCO₃ (60 mL). The layers were separated and the aqueous layer extracted with CH_2Cl_2 (3 × 50 mL). The combined organic layers were dried (MgSO₄) and then concentrated. The crude product was then purified by flash chromatography using cyclohexane/ethyl acetate 6:1 to yield alcohol 13 (1.33 g, 88%) as colourless solid. $R_{\rm f}$ 0.16 (cyclohexane/EtOAc 6:1). – mp 43 °C. – $[\alpha]_{\rm p}^{20} = -44.5$ $(0.92 \text{ g}/100 \text{ mL}, \text{CHCl}_3)$. – ¹H NMR (400 MHz, CDCl₃): $\delta = 0.95$ $(d, J = 6.7 \text{ Hz}, 3 \text{ H}, \text{HOCH}_2\text{CHC}H_3), 0.99 (d, J = 6.6 \text{ Hz}, 3 \text{ H},$ $C = CHCHCH_3$), 1.11–1.19 (m, 1 H, $CHCH_AH_BCH$), 1.27 (bs, 1 H, OH), 1.39–1.45 (m, 1 H, CHCH_A H_B CH), 1.63–1.71 (m, 1 H, $HOCH_2CH$), 1.88 (s, 3 H, PhCH=CHCC H_3), 2.61–2.72 (m, 1 H, C=CHCH), 3.42 (dd, J = 10.5 Hz, J = 6.5 Hz, 1 H, HOCH_AH_B), 3.53 (dd, J = 10.5 Hz, J = 5.2 Hz, 1 H, HOCH_AC H_B), 5.43 (d, J = 9.5 Hz, 1 H, PhCH=CHC=CH), 6.45 (d, J = 16.1 Hz, 1 H,PhCH), 6.79 (d, J = 16.1 Hz, 1 H, PhCH=CH), 7.17–7.21 (m, 1 $H,\ H_{arom.}),\ 7.29-7.32\ (m,\ 2\ H,\ H_{arom.}),\ 7.39-7.41\ (m,\ 2\ H,\ H_{arom.}).$ - ¹³C NMR (100 MHz, CDCl₃): $\delta = 12.6$ (p), 17.2 (p), 20.8 (p), 30.3 (t), 33.5 (t), 41.0 (s), 68.1 (s), 125.8 (t), 126.1 (t), 126.9 (t), 128.5 (t), 132.1 (q), 134.1 (t), 137.9 (q), 140.8 (t). – IR (neat): $\tilde{v} =$ 3307, 3078, 3055, 3028, 2959, 2921, 2870, 1658, 1630, 1596, 1575, 1492, 1447, 1370, 1269, 1232, 1153, 1074, 1037, 990, 961, 924, 909, 883, 830, 747, 690, 647, 532, 456, 438, 427, 409 cm⁻¹. – MS (EI, 70 eV) m/z (%): 244 (47) [M⁺], 171 (100), 143 (29), 129 (31), 99 (37), 91 (31). – HRMS (C₁₇H₂₄O): calc. 244.1827, found 244.1829.

(2Z,4R,6R,7E,9E)-Ethyl 2-ethyl-4,6,8-trimethyl-10phenyldeca-2,7,9-trienoate (14a)

Dess-Martin periodinane (3.56 mL, 1.65 mmol) was added at 0 °C to a solution of alcohol 13 (310 mg, 1.27 mmol) in CH₂Cl₂ (15 mL). After stirring for 2 h at rt, the reaction mixture was quenched by adding saturated aqueous Na₂S₂O₃ (5 mL) and saturated aqueous NaHCO₃ (5 mL). The layers were separated and the aqueous layer extracted with CH₂Cl₂ (4 × 10 mL). The organic layer was dried (MgSO₄) and concentrated to yield the crude aldehyde (310 mg, 1.27 mmol, assumed to be quantitative) as colourless oil, which was used without further purification for the following olefination reaction.

To a solution of sodium hydride (60% in mineral oil, 152 mg, 3.87 mmol) in THF (15 mL) at 0 °C was added dropwise ethyl 2-(diethoxyphosphoryl)butanoate (960 mg, 3.87 mmol) (or ethyl 2-((bis(o-tolyloxy))phosphoryl)acetate for method according to ANDO et al.). The solution was stirred at rt for 1 h before

cooling to 0 °C and addition of the crude aldehyde (310 mg, 1.27 mmol, from previous reaction) in THF (5 mL). The solution was stirred for 1 h at 0 °C, warmed slowly to rt and stirred for an additional 3 h. The reaction was quenched by pouring on to saturated aqueous NH₄Cl (80 mL). The product was extracted with Et₂O and the combined extracts were dried (MgSO₄) and concentrated. The crude product was then purified by column chromatography on silica using n-pentane-Et₂O 30:1 to yield ester 14a (328 mg, 76%) as a colourless oil. A 4:1 ratio of Z/Eproducts was obtained. R_f 0.50 (cyclohexane/EtOAc = 18:1). $- [\alpha]_{D}^{20} = -10.0 \text{ (1.36 g/100 mL, CHCl}_{3}). - {}^{1}\text{H NMR (400 MHz,}$ CDCl₃): $\delta = 0.94$ (d, J = 6.4 Hz, 3 H, PhCH=CHC=CHCHC H_3), 1.00 (d, J = 7.2 Hz, 3 H, $EtCO_2C = CHCHCH_3$), 1.04 (t, $J = 7.2 \text{ Hz}, 3 \text{ H}, \text{ EtCO}_2\text{CCH}_2\text{C}H_3), 1.21 \text{ (t, } J = 6.8 \text{ Hz},$ 3 H, $CO_2CH_2CH_3$), 1.29–1.36 (m, 2 H, $CHCH_2CH$), 1.79 (s, 3 H, PhCH=CHCCH₃), 2.22–2.33 (m, 2 H, EtCO₂CCH₂CH₃), 2.43-2.59 (m, 1 H, PHCH=CHC=CHCH), 2.98-3.01 (m, 1 H, EtCO₂C=CHCH), 4.01–4.15 (m, 2 H, $CO_2CH_2CH_3$), 5.34 (d, J = 9.6 Hz, 1 H, PhCH=CHC=CH), 5.58 (d, J = 9.6 Hz, 1)H, EtCO₂C=CH), 6.41 (d, J = 16.0 Hz, 1 H, PhCH), 6.77 (d, J =16.0 Hz, 1 H, PhCH=CH), 7.17–7.21 (m, 1 H, H_{arom}.), 7.28–7.32 $(m, 2 H, H_{arom.}), 7.38-7.40 (m, 2 H, H_{arom.}). - {}^{13}C NMR (100 MHz,$ CDCl₃): $\delta = 12.6$ (p), 13.9 (p), 14.3 (p), 21.1 (p), 21.5 (p), 27.8 (s), 31.3 (t), 32.0 (t), 45.8 (s), 60.2 (s), 125.7 (t), 126.2 (t), 126.9 (t), 128.6 (t), 132.6 (q), 132.9 (q), 134.3 (t), 138.2 (q), 140.5 (t), 145.9 (t), 168.3 (q). – IR (film): $\tilde{v} = 3027, 2961, 2868, 1727, 1599, 1493,$ 1450, 1381, 1211, 1180, 1030, 1029, 704 cm⁻¹. – MS (EI, 70 eV) m/z (%): 340 (6) [M⁺], 267 (14), 171 (8), 91 (6), 43 (100). – HRMS $(C_{23}H_{32}O_2)$: calc. 340.2402, found 340.2400.

Compound 15a

A solution of linear ester 14a (100 mg, 294 µmol) in toluene (30 mL) was heated to reflux and stirred in a sealed vial for 20 h. The mixture was concentrated. The crude product was purified by column chromatography on silica using *n*-pentane–Et₂O 40:1 to yield cyclic ester 15a (85.0 mg, 85%) as colourless oil. $R_{\rm f}$ 0.40 (cyclohexane/EtOAc = 18:1). $- [\alpha]_D^{20} = +173.5 (0.34 \text{ g}/100 \text{ mL},$ CHCl₃). – (NMR assignment according to numbering system of plakotenin, see ESI†) ¹H NMR (400 MHz, CDCl₃): $\delta = 0.78$ (t, J = 7.2 Hz, 3 H, 17-H, 0.94 (d, J = 6.4 Hz, 3 H, 14-H), 1.00-1.06(m, 1 H, 11-H), 1.14 (d, J = 6.0 Hz, 3 H, 13-H), 1.19–1.24 (m, 1 H, 11-H), 1.31 (t, J = 7.5 Hz, 3 H, 17-H), 1.52–1.62 (m, 3 H, 3-H and 5-H), 1.80 (bs, 3 H, 15-H), 1.83-1.92 (m, 2 H, 4-H and 7-H), 2.43–2.51 (m, 1 H, 6-H), 4.12 (bs, 1 H, 10-H), 4.22 (ddg, J =24, 9.6, 7.2 Hz, 2 H, 16-H), 5.28 (s, 1 H, 9-H), 7.22-7.25 (m, 1 H, $H_{arom.}$), 7.26–7.30 (m, 4 H, $H_{arom.}$). – ¹³C NMR (100 MHz, CDCl₃): $\delta = 9.4$ (p), 14.6 (p), 21.6 (p), 22.3 (p), 24.1 (p), 26.8 (s), 31.2 (t), 35.4 (t), 45.0 (s), 48.0 (t), 53.1 (t), 53.6 (t), 54.6 (q), 60.2 (s), 126.2 (t), 126.6 (t), 127.9 (t), 130.8 (t), 136.2 (q), 141.9 (q), 175.7 (q).

Compound 16a

To a solution of ester 15a (85.0 mg, 250 µmol) in THF (3 mL) at 0 °C was slowly added lithium aluminium hydride (9.70 mg, 255 µmol). After stirring at 0 °C to rt overnight the mixture was quenched carefully at 0 °C with H₂O followed by Rochelle's salt solution. The aqueous layer was extracted with EtOAc (4 \times 5 mL), the combined organic extracts were dried (MgSO₄) and concentrated. The crude product was purified by column chromatography on silica using n-pentane-Et₂O 9:1 to yield alcohol 16a (71.0 mg, 95%) as colourless oil. $R_{\rm f}$ 0.38 (cyclohexane/EtOAc = 6:1). $- [\alpha]_D^{20} = +184.6 (0.28 \text{ g}/100 \text{ mL}, \text{CHCl}_3). -$ (NMR assignment according to numbering system of plakotenin, see ESI†) ¹H NMR (600 MHz, CDCl₃): $\delta = 0.82$ (t, J = 7.2 Hz, 3 H, 12-H), 0.93 (d, J = 6.6 Hz, 3 H, 14-H), 1.04 (sext, J = 7.2 Hz, 1 H, 11-H), 1.20 (d, J = 5.4 Hz, 3 H, 13-H), 1.28 (bs, 1 H, OH), 1.35 (sext, J = 7.2 Hz, 1 H, 11-H), 1.50–1.54 (m, 1 H, 5-H), 1.57–1.62 (m, 1 H, 5-H), 1.71 (t, J = 10.8 Hz, 1 H, 3-H), 1.83 (s, 3 H, 15-H), 1.86–1.90 (m, 2 H, 4-H and 7-H), 2.17–2.23 (m, 1 H, 6-H), 4.12 (d, J = 4.2 Hz, 1 H, 10-H, 3.60 (d, J = 11.4 Hz, 1 H, 1-H), 3.84 (d, J = 11.4 Hz, 1 Hz, 1 Hz)J = 10.8 Hz, 1 H, 1-H), 5.19 (d, J = 3.6 Hz, 1 H, 9-H), 7.20–7.23 $(m, 1 H, H_{arom.}), 7.25-7.29 (m, 4 H, H_{arom.}). - {}^{13}C NMR (100 MHz,$ CDCl₃): $\delta = 8.8$ (p), 21.6 (p), 22.5 (p), 24.0 (p), 25.7 (s), 31.4 (t), 35.2 (t), 43.4 (q), 45.3 (s), 49.8 (t), 51.7 (t), 54.3 (t), 65.2 (s), 126.1 (t), 126.3 (t), 127.7 (t), 130.7 (t), 136.5 (q), 141.3 (q).

Compound 16b

To a solution of ester 15b (85.0 mg, 250 µmol) in THF (3 mL) at 0 °C was slowly added lithium aluminium hydride (9.70 mg, 255 μmol). After stirring at 0 °C to rt overnight the mixture was quenched carefully at 0 °C with H₂O followed by Rochelle's salt solution. The aqueous layer was extracted with EtOAc $(4 \times 5 \text{ mL})$, dried (MgSO₄) and concentrated. The crude product was purified by column chromatography on silica using n-pentane-Et₂O 9:1 to yield alcohol **16b** (71.0 mg, 95%) as colourless oil. $R_{\rm f}$ 0.38 (cyclohexane/EtOAc = 6:1). $- [\alpha]_D^{20} = +160.3 (0.72 \text{ g}/100 \text{ mL},$ CHCl₃). – (NMR assignment according to numbering system of plakotenin, see ESI†) ¹H NMR (600 MHz, CDCl₃): $\delta = 0.91$ (d, J = 6.6 Hz, 3 H, 14-H), 1.03 (t, J = 7.2 Hz, 3 H, 12-H), 1.19(d, J = 5.4 Hz, 3 H, 13 -H), 1.55 (t, J = 8.4 Hz, 1 H, 5 -H), 1.55 --1.60(m, 1 H, 11-H), 1.61 (sext, J = 7.2 Hz, 1 H, 11-H), 1.61 (t, J =10.8 Hz, 1 H, 3-H), 1.82–1.87 (m, 4 H, 7-H and 15-H), 1.88–1.92 (m, 1 H, 4-H), 1.96-2.02 (m, 1 H, 6-H), 3.23 (d, J = 8.4 Hz, 1 H, 1 H, 1 Hz, 1 H, 2 Hz, 1 Hz,1-H), 3.33 (d, J = 2.4 Hz, 1 H, 10-H), 3.39 (d, J = 11.4 Hz, 1 H, 1-H), 5.15 (s, 1 H, 9-H), 7.22–7.25 (m, 1 H, H_{arom}.), 7.30–7.31 (m, 4 H, H_{arom}.). - ¹³C NMR (125 MHz, CDCl₃): δ = 8.8 (p), 22.0 (p), 22.5 (p), 22.6 (p), 24.4 (s), 31.1 (t), 34.8 (t), 43.2 (q), 45.2 (s), 50.5 (t), 51.0 (t), 52.1 (t), 66.2 (s), 125.0 (t), 126.7 (t), 128.3 (t), 130.2 (t), 136.9 (q), 142.5 (q), 175.7 (q). – IR (film): $\tilde{v} = 3471$, 3059, 3024, 2930, 2880, 1598, 1490, 1452, 1376, 1032, 702 cm⁻¹. – MS (EI, 70 eV) m/z (%): 298 (26) [M⁺], 267 (51), 225 (25), 171 (100), 91 (15).

(2Z,4R,6R,7E,9E)-2-Ethyl-4,6,8-trimethyl-10-phenyldeca-2,7,9-trien-1-ol (17)

To a solution of ester **14a** (325 mg, 954 µmol) in THF (10 mL) at 0 °C was slowly added lithium aluminium hydride (37.0 mg, 974 µmol). After stirring at 0 °C for 2 h the reaction mixture was quenched carefully at 0 °C with H₂O followed by Rochelle's salt solution. The aqueous layer was extracted with Et₂O (4 × 10 mL). The combined organic extracts were dried (MgSO₄) and concentrated. The crude product was then purified by column chromatography on silica using n-pentane–Et₂O 9:1 to yield alcohol **17** (175 mg, 61%). $R_{\rm f}$ 0.52 (cyclohexane/EtOAc = 6:1). – [α]_D²⁰ = -102.6 (0.61 g/100 mL, CHCl₃). – ¹H NMR (500 MHz,

CDCl₃): $\delta = 0.94$ (d, J = 6.5 Hz, 3 H, HOCH₂C=CHCHCH₃), $0.97 (d, J = 6.5 Hz, 3 H, PhCH=CHC=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHC=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHC=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHC=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHC=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHC=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHC=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHC=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHC=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 H, PhCH=CHCHCH_3), 1.05 (t, J = 6.5 Hz, 3 Hz, 3$ 7.5 Hz, 3 H, HOCH₂CCH₂CH₃), 1.14 (bs, 1 H, OH), 1.27–1.38 (m, 2 H, CHC H_2 CH), 1.80 (s, 3 H, PhCH=CHCC H_3), 2.14 (q, J =7.5 Hz, 2 H, HOCH₂CCH₂CH₃), 2.41–2.56 (m, 2 H, CHCH₂CH), 4.02 (s, 2 H, HOC H_2), 5.05 (d, J = 10.0 Hz, 1 H, HOC H_2 C=CH), 5.41 (d, J = 9.5 Hz, 1 H, PhCH=CHC=CH), 6.44 (d, J = 16.0 Hz,1 H, PhCH), 6.79 (d, J = 16.0 Hz, 1 H, PhCH=CH), 7.19 (t, J =7.5 Hz, 1 H, H_{arom} .), 7.29–7.32 (m, 2 H, H_{arom} .), 7.40 (d, J = 7.5 Hz, 2 H, H_{arom}.). – 13 C NMR (125 MHz, CDCl₃): δ = 12.7 (p), 13.2 (p), 21.7 (p), 22.7 (p), 28.0 (s), 30.5 (t), 31.2 (t), 46.0 (s), 60.7 (s), 126.2 (t), 126.3 (t), 127.1 (t), 128.7 (t), 133.0 (q), 133.7 (t), 133.9 (t), 138.0 (q), 139.3 (q), 140.8 (t). – IR (film): $\tilde{v} = 3343$, 3027, 2959, 2923, 1598, 1493, 1450, 1385, 1016, 958, 747, 692 cm⁻¹. – MS (EI, 70 eV) *m/z* (%): 298 (67) [M⁺], 171 (100), 153 (69), 107 (60). – HRMS (C₂₁H₃₀O): calc. 298.2297, found 298.2296.

(2*E*,4*Z*,6*R*,8*R*,9*E*,11*E*)-Ethyl 4-ethyl-2,6,8,10-tetramethyl-12-phenyldodeca-2,4,9,11-tetraenoate (18)

Dess–Martin periodinane (1.41 mL, 653 μ mol) was added at 0 °C to a solution of alcohol **17** (150 mg, 503 μ mol) in CH₂Cl₂ (10 mL). After stirring for 2 h at rt, the reaction mixture was quenched by adding saturated aqueous Na₂S₂O₃ (5 mL) and saturated aqueous NaHCO₃ (5 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (4×10 mL). The organic layer was dried (MgSO₄) and concentrated to yield the crude aldehyde (150 mg, 503 μ mol, assumed to be quantitative) as colourless oil, which was used without further purification for the following olefination reaction.

To a solution of sodium hydride (60% in mineral oil, 66.0 mg, 1.66 mmol) in THF (10 mL) at 0 °C was added dropwise ethyl 2-(diethoxyphosphoryl)propanoate (350 µL, 1.61 mmol). The solution was stirred at rt for 1 h before cooling to 0 °C and addition of crude aldehyde (150 mg, 503 µmol, from previous reaction) in THF (5 mL). The solution was warmed slowly to rt and after stirring overnight the reaction was quenched by pouring on to saturated aqueous NH₄Cl (10 mL). The product was extracted with Et₂O and the combined extracts were dried (MgSO₄) and concentrated. The crude product was then purified by column chromatography on silica using *n*-pentane-Et₂O 40:1 to yield ester **18** (169 mg, 88%) as colourless oil. $R_{\rm f}$ 0.44 (cyclohexane/EtOAc = 18:1). – $[\alpha]_D^{20} = +17.3 \ (0.84 \ \text{g}/100 \ \text{mL}, \text{CHCl}_3). - {}^{1}\text{H NMR} \ (400 \ \text{MHz},$ CDCl₃): $\delta = 0.92$ (d, J = 6.4 Hz, 3 H, PhCH=CHC=CHCHC H_3), $0.93 \text{ (d, } J = 6.8 \text{ Hz, } 3 \text{ H, } \text{EtCO}_2\text{C} = \text{CHC} = \text{CHCHC}H_3 \text{), } 0.99$ (t, J = 7.6 Hz, 3 H, EtCO₂C=CHCCH₂CH₃), 1.13 (t, J =7.2 Hz, 3 H, CO₂CH₂CH₃), 1.30–1.34 (m, 2 H, CHCH₂CH), 1.80 (s, 3 H, EtCO₂CC H_3), 1.83 (s, 3 H, PhCH=CHCC H_3), 2.13 (q, J = 7.6 Hz, 2 H, EtCO₂C=CHCC H_2 CH₃), 2.17– 2.23 (m, 1 H, EtCO₂C=CHC=CHCH), 2.44-2.55 (m, 1 H, PhCH=CHC=CHCH), 3.94–4.08 (m, 2 H, CO₂CH₂CH₃), 5.12 $(d, J = 10.0 \text{ Hz}, 1 \text{ H}, \text{EtCO}_2\text{C} = \text{CHC} = \text{C}H), 5.35 (d, J = 9.6 \text{ Hz},$ 1 H, PhCH=CHC=CH), 6.41 (d, J = 16.0 Hz, 1 H, PhCH), 6.76 $(d, J = 16.0 \text{ Hz}, 1 \text{ H}, PhCH=CH), 7.05 (s, 1 \text{ H}, EtCO_2C=CH),$ 7.15 (t, J = 7.2 Hz, 1 H, H_{arom}.) 7.28 (d, J = 8.0 Hz, 2 H, H_{arom}.), 7.39 (d, J = 7.2 Hz, 2 H, H_{arom}.). – ¹³C NMR (100 MHz, CDCl₃): $\delta = 12.7$ (p), 13.4 (p), 14.3 (p), 14.4 (p), 21.1 (p), 21.5 (p), 30.0 (s), 30.9 (t), 31.9 (t), 45.9 (s), 60.7 (s), 125.6 (t), 126.2 (t), 126.9 (t), 128.5 (q), 128.6 (t), 132.6 (q), 134.3 (t), 134.9 (t), 136.3 (q), 138.2 (q), 139.1 (t), 141.0 (t), 168.4 (q). – IR (film): $\tilde{v} = 3027, 2962, 2926,$ 2869, 1711, 1631, 1598, 1493, 1450, 1368, 1254, 1115, 1034, 959, 747, 692 cm⁻¹. – MS (EI, 70 eV) m/z (%): 380 (4) [M⁺], 225 (4), 171 (4), 91 (3), 43 (100). – HRMS (C₂₆H₃₆O₂): calc. 380.2715, found 380.2717.

Plakotenin ethyl ester (19)

A solution of linear ester 18 (85.0 mg, 223 µmol) in toluene (20 mL) was heated to reflux and stirred in a sealed vial for 20 h. The mixture was concentrated. The crude product was purified by column chromatography on silica using n-pentane-Et₂O 40:1 to yield plakotenin ethyl ester 19 (77.0 mg, 91%) as colourless oil. $R_{\rm f}$ 0.42 (cyclohexane/EtOAc = 18:1). $- [\alpha]_{\rm D}^{20} = +203.8$ (1.46 g/ 100 mL, CHCl₃). – (NMR assignment according to numbering system of plakotenin, see ESI†) ¹H NMR (400 MHz, CDCl₃): δ = 0.77 (t, J = 7.2 Hz, 3 H, 18-H), 0.98 (d, J = 6.0 Hz, 3 H, 15-H), 1.00-1.10 (m, 1 H, 17-H), 1.15 (d, J = 6.0 Hz, 3 H, 14-H), 1.32 (t, J = 7.5 Hz, 3 H, 20-H, 1.54 (t, J = 8.2 Hz, 2 H, 7-H), 1.72--1.78(m, 3 H, 5-H, 9-H and 17-H), 1.82 (s, 3 H, 16-H), 1.85-1.92 (m, 2 H, 6-H and 8-H), 2.05 (s, 3 H, 13-H), 3.69 (d, J = 4.0 Hz, 1 H, 12-H), 4.22 (q, J = 7.2 Hz, 2 H, 19-H), 5.23 (d, J = 4.0 Hz, 1 H, 11-H), 6.86 (s, 1 H, 3-H), 7.20-7.24 (m, 1 H, H_{arom} .), 7.28-7.31 (m, 4 H, H_{arom.}). - ¹³C NMR (100 MHz, CDCl₃): $\delta = 9.4$ (p), 14.3 (p), 14.4 (p), 21.9 (p), 22.5 (p), 23.3 (p), 27.2 (s), 31.7 (t), 34.7 (t), 45.1 (s), 47.9 (q), 52.3 (t), 52.4 (t), 55.5 (t), 60.8 (s), 125.4 (t), 126.6 (t), 127.8 (t), 128.1 (q), 131.0 (t), 137.1 (q), 142.3 (q), 146.6 (t), 169.5 (q). – MS (EI, 70 eV) m/z (%): 380 (22) [M⁺], 225 (16), 171 (13), 91 (12), 43 (100). – HRMS (C₂₆H₃₆O₂): calc. 380.2715, found 380.2714.

Plakotenin (1)

To a solution of plakotenin ethyl ester 19 (25.0 mg, 66.0 μmol) in THF-MeOH (1.6/0.8 mL) was added NaOH (2 M) (160 µL, 328 µmol) and the resulting mixture was heated to 40 °C and stirred for 20 h. After cooling to rt, the mixture was acidified with aqueous HCl (1 M) and then extracted with EtOAc. The combined organic extracts were backwashed with brine, dried (MgSO₄) and concentrated. The crude product was purified by column chromatography on silica using n-pentane-Et₂O 2:1 to yield plakotenin 1 (20.0 mg, 86%) as colourless oil. $R_{\rm f}$ 0.40 (cyclohexane/EtOAc = 2:1). $- [\alpha]_D^{20} = +212 (0.24 \text{ g}/100 \text{ mL})$ CHCl₃). - (NMR assignment according to numbering system shown in ESI†) ¹H NMR (500 MHz, CDCl₃): $\delta = 0.78$ (t, J =7.0 Hz, 3 H, 18-H), 0.98 (d, J = 6.5 Hz, 3 H, 15-H), 1.03–1.12 (m, 1 H, 17-H), 1.16 (d, J = 6.5 Hz, 3 H, 14-H), 1.56 (t, J = 8.5 Hz, 3 H, 7-H), 1.73-1.80 (m, 3 H, 5-H, 9-H and 17-H), 1.83 (s, 3 H, 16-H), 1.86–1.95 (m, 2 H, 6-H and 8-H), 2.07 (s, 3 H, 13-H), 3.71 $(d, J = 4.0 \text{ Hz}, 1 \text{ H}, 12\text{-H}), 5.23 \text{ (s, 1 H, 11\text{-H})}, 7.03 \text{ (s, 1 H, 3\text{-H})},$ 7.21-7.25 (m, 1 H, H_{arom}.), 7.29-7.30 (m, 4 H, H_{arom}.). - ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3): \delta = 9.4(p), 14.0(p), 21.9(p), 22.5(p), 23.3(p),$ 27.1 (s), 31.7 (t), 34.7 (t), 45.1 (s), 48.2 (q), 52.2 (t), 52.5 (t), 55.4 (t), 125.3 (t), 126.6 (t), 127.3 (q), 127.9 (t), 131.0 (t), 137.2 (q), 142.1 (q), 149.7 (t), 174.8 (q). – IR (film): $\tilde{v} = 2929$, 2868, 1683, $1629,\,1492,\,1451,\,1419,\,1377,\,1281,\,877,\,762,\,745,\,703\;cm^{-1}.-MS$ (EI, 70 eV) *m/z* (%): 352 (100) [M⁺], 261 (48), 225 (84), 171 (70). - HRMS (C₂₄H₃₂O₂): calc. 352.2402, found 352.2401.

Acknowledgements

This work has been supported by the KIT, the Landesgraduiertenförderung (fellowship to Dr S. Arzt) and the Région Rhône-Alpes (fellowship to Dr E. Bourcet). We thank Dr A. Quereshi for copies of NMR spectra and Prof. Sir J. E. Baldwin as well as Dr D. Keck for valuable advice.

Notes and references

- 1 (a) K.-i. Takao, R. Munakata and K. Tadano, Chem. Rev., 2005, 105, 4779-4807; (b) M. Stocking and R. M. Williams, Angew. Chem., Int. Ed., 2003, 42, 3078-3115; (c) A. Ichihara and H. Oikawa, Curr. Org. Chem., 1998, 2, 365-394.
- 2 J. Kobayashi, S. Takeuchi, M. Ishibashi, H. Shigemori and T. Sasaki, Tetrahedron Lett., 1992, 33, 2579-2580.
- 3 A. Qureshi, C. S. Stevenson, C. L. Albert, R. S. Jacobs and D. J. Faulkner, J. Nat. Prod., 1999, 62, 1205-1207.
- 4 (a) X. Huang, R. van Soest, M. Roberge and RJ. Andersen, Org. Lett., 2004, 6, 75–78; (b) F. Berrue, O. P. Thomas, R. Laville, S. Prado, J. Golebiowski, R. Fernandez and P. Amade, Tetrahedron, 2007, 63, 2328-2334.
- 5 (-)-Spiculoic acid: (a) J. E. D. Kirkham, V. Lee and J. E. Baldwin, Chem. Commun., 2006, 2863-2865; (b) G. Mehta and U. K. Kundu, Org. Lett., 2005, 7, 5569-5572; (c) J. E. D. Kirkham, V. Lee and J. E. Baldwin, Org. Lett., 2006, 8, 5537-5540; (d) J. S. Crossman and M. V. Perkins, Tetrahedron, 2008, 64, 4852-4867.
- 6 (+)-Spiculoic acid: D. Matsumura, T. Toda, T. Hayamizu, K. Sawamura, K. Takao and K. Tadano, Tetrahedron Lett., 2009, 50, 3356-3358.
- 7 For related work from our group see: (a) D. Keck, T. Muller and S. Bräse, Synlett, 2006, 3457-3460; (b) D. Keck and S. Bräse, Org. Biomol. Chem., 2006, 4, 3574-3575.
- 8 F. Rahm, P. Hayes and W. Kitching, Heterocycles, 2004, 64, 523-575.
- 9 Diels-Alder examples: (a) N. A. Yakelis and W. R. Roush, Org. Lett., 2001, 3, 957-960; (b) R. Munakata, H. Katakai, T. Ueki, J. Kurosaka, T. Takao and K. Tadano, J. Am. Chem. Soc., 2004, 126, 11254-11267
- 10 (a) D. J. Gochfeld and M. T. Hamann, J. Nat. Prod., 2001, 64, 1477-1479; (b) J. P. John, J. Jost and A. V. Novikov, J. Org. Chem., 2009, **74**, 6083–6091; (c) F. Berrue, O. P. Thomas, C. Funel-Le Bon, F. Reyes and P. Amade, Tetrahedron, 2005, 61, 11843-11849; (d) G. R. Pettit, T. Nogawa, J. C. Knight, D. L. Doubek and J. N. A. Hooper, J. Nat. Prod., 2004, 67, 1611–1613; (e) M. Akiyama, Y. Isoda, M. Nishimoto, M. Narazaki, H. Oka, A. Kuboki and S. Ohira, *Tetrahedron Lett.*, 2006, 47, 2287–2290; (f) H. D. Higgs and D. J. Faulkner, J. Org. Chem., 1978, 43, 3454–3457; (g) E. Manzo, M. L. Ciavatta, D. Melck, P. Schupp, N. de Voogd and M. Gavagnin, J. Nat. Prod., 2009, 72, 1547-1551.
- 11 For early approaches: F Ishizaki, Y Hara, S. Kojima and O. Hoshino, Heterocycles, 1999, 50, 779-790.
- 12 A. G. Myers, B. H. Yang, H. Chen and J. L. Gleason, J. Am. Chem. Soc., 1994, **116**, 9361–9362.
- 13 All new compounds were fully characterised. See ESI†.
- 14 K. Tsunashima, M. Ide, H. Kadoi, A. Hirayama and M. Nakata, Tetrahedron Lett., 2001, 42, 3607-3611.
- 15 M. J. Gaunt, A. S. Jessiman, P. Orsini, H. R. Tanner, D. F. Hook and S. V. Ley, Org. Lett., 2003, 5, 4819-4822
- 16 For similar building blocks using benzyl groups: J. D. White and H. Smits, Org. Lett., 2005, 7, 235-238.
- 17 J. A. Marshall, B. G. Shearer and S. L. Crooks, J. Org. Chem., 1987, **52**, 1236-1245
- 18 R. Desmond, S. G. Mills, R. P. Volante and I. Shinkai, Tetrahedron Lett., 1988, **29**, 3895–3898.
- 19 P. J. Kocienski, A. Bell and P. R. Blakemore, Synlett, 2000, 365-366.
- 20 (a) K. Ando, J. Org. Chem., 1997, 62, 1934–1939; (b) K. Ando, J. Org. Chem., 1998, 63, 8411-8416; (c) K. Ando, J. Org. Chem., 1999, 64, 8406-8408; (d) K. Ando, T. Oishi, M. Himara, H. Ohno and T. Ibuka, J. Org. Chem., 2000, 65, 4745-4749; (e) For preparation and use of phosphonate F, see also: L. C. Dias and P. R. R. Meira, J. Org. Chem., 2005, 70, 4762-4773.